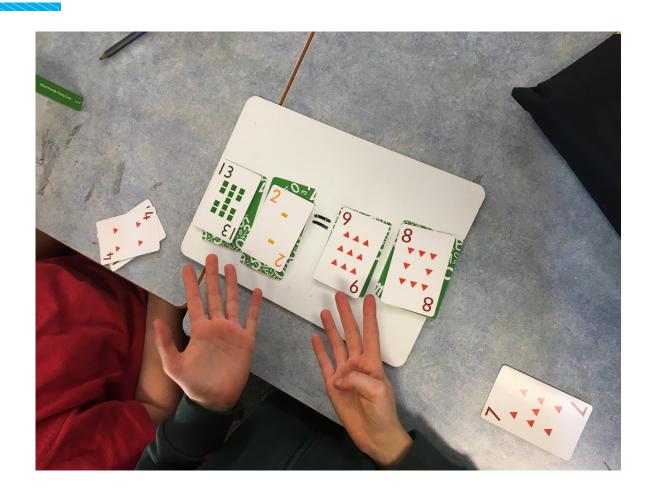
www.mav.vic.edu.au

Embedding creative and critical thinking for continuous and sustained learning.

Jen Bowdon Ellen Corovic

Overview



Embedding creative and critical thinking for continuous and sustainable learning

Ensuring that there is a consistency of high quality of teaching across a school is one of the greatest challenges of a leader. Explore how leaders can ensure professional learning in mathematics has a direct and positive impact on student learning outcomes. Examples of achievable, school- based professional learning programs that focus on collaborate practices will be highlighted. A framework of key questions a leadership team should address to maximise their investment in professional learning will be presented.

Warm up

Priorities

Rank these statements

Rank as a table

Learning by doing

- Balance without numbers
- Rectilinear polygons

Direct and positive impact

Inquiry **Protocols**

The reSolve: Mathematics by Inquiry Protocol

reSolve: Mathematics by Inquiry amplifies existing approaches to teaching mathematics through structured and purposeful investigations of mathematical and realistic contexts. The reSolve Protocol provides a description of key features of school mathematics that underpin the Professional and Classroom resources in reSolve.

Strength of Presence			reSolve mathematics is purposeful. reSolve contests a view of school mathematics as a body of disconnected facts and
L	м	н	procedures to be learned, by:
			Presenting mathematics as a way of modelling the real world and as an abstract discipline.
			Focusing on substantial mathematical ideas.
			Supporting a rich interpretation and enactment of the content and proficiencies of the Australian Curriculum: Mathematics.
			Acknowledging mathematics as a creative and imaginative endeavour, continually changing and developing in a technological society.
			Connecting mathematics through deep linkages to other mathematical ideas and to other areas of the curriculum.

Strength of Presence			reSolve tasks are challenging yet accessible. reSolve contests a view that some students can "do" mathematics well and others cannot, by:
L	м	н	others cannot, by:
			Activating existing knowledge, developing new knowledge and exploring relationships between key ideas by working on meaningful tasks.
			Engaging students in sustained inquiry, problem solving, decision making and communication.
			Providing opportunity for all students irrespective of background and experience.
			Structuring tasks and using technologies to optimise students' mathematical development.
			Using evidence of students' progress to inform feedback and subsequent teaching action.
			Providing prompts and activities meeting a range of student capabilities, from those needing assistance to those ready for further challenge.

Strength of Presence			reSolve classrooms have a knowledge-building culture. reSolve contests a view that mathematics is best learned through copying and memorising, by:
L	М	н	copying and memoraling, by:
			Sustaining higher order mathematical thinking through the active role of both teacher and student.
			Challenging existing conceptions and using mistakes as a vehicle for learning.
			Enhancing learning through active exploration of a variety of perspectives, including ideas from other people and disciplines.
			Building success and understanding through collaborative inquiry, action and reflection, enhanced by the use of technologies as tools for working mathematically.
			Eliciting productive dispositions, including productive struggle and the motivation and confidence to take risks.

Standards for excellence: AAMT

Professional Knowledge Professional Attributes Professional Practice THE AUSTRALIAN ASSOCIATION OF MATHEMATICS TEACHERS

in Teaching Mathematics in Australian Schools

2006 edition	
--------------	--

Professional Knowledge

Knowledge of students

- Teachers understand students social, cultural needs
- Teachers have knowledge of how students use mathematics
- Teachers understand students **confidence** in mathematics

Knowledge of mathematics

- Teacher knowledge of content and how to teach it
- Teacher understands the connections within mathematics and beyond
- Teacher understands how mathematics is represented

Knowledge of students' learning of mathematics

- Teachers know relevant learning theories and research
- Teachers know developmental sequences, language and representations
- Teachers have a range of effective strategies they use (student engagement)

Professional Attributes

- Personal attributes
 - Teachers enthusiasm for teaching and mathematics
 - Teachers self belief in themselves as a teacher (efficacy)
 - Teachers have high expectations
- Personal professional development
 - Teachers committed to continuous improvement
 - Teachers use professional learning to assist to inform their views
- Community responsibilities
 - Teachers actively contribute to the wider community
 - Teachers value the home school partnership
 - Teachers connect learning outside of the classroom

Professional Practice

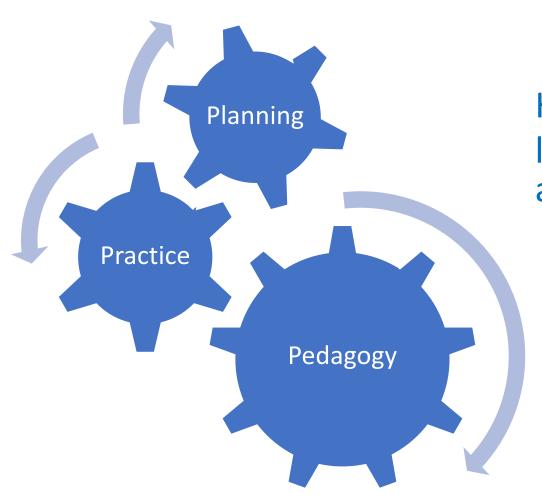
The learning environment

- Teachers provide safe learning environments that empower students to become independent learners
- Teachers promote and value active engagement in mathematics

Planning for learning

 Teacher plan learning sequences taking into account student social, academic knowledge

Teaching in action


• Teachers promote curiosity, problem solving, thinking and reasoning

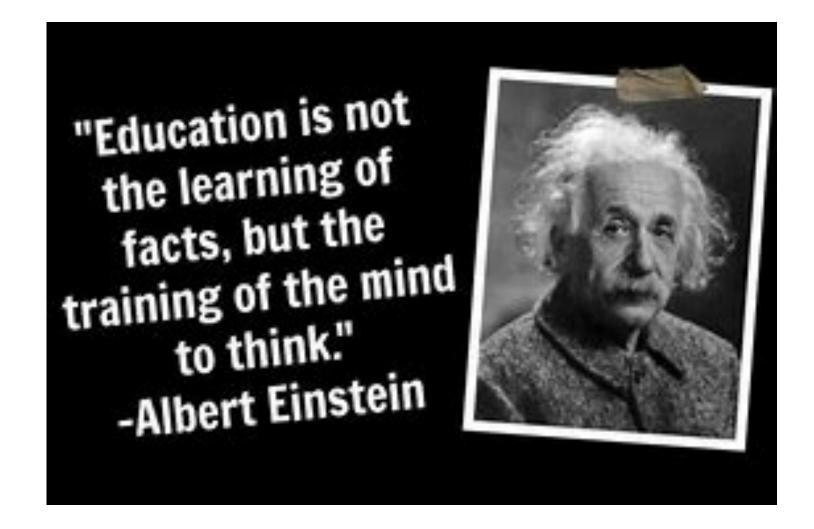
Assessment

Teachers use a range of on-going assessment types to assist in planning

Personal Professional Experience The MATHEMATICAL ASSOCIATION OF VIC

How do we ensure our professional learning is sustainable and effective across our school?

Summarise


3: Things you learnt from this workshop

2: Connections with what you do at school

1: Question you still have

This Photo by Unknown Author is licensed under CC BY-SA

Ellen

Jen ecorovic@mav.vic.edu.au jbowden@mav.vic.edu.au